US009304663B1

a2z United States Patent (10) Patent No.: US 9,304,663 B1
Guo (45) Date of Patent: Apr. 5, 2016
(54) CENTRALIZED, SCALABLE, RESOURCE (56) References Cited
MONITORING SYSTEM
U.S. PATENT DOCUMENTS
(71) ZAppllca‘Ilt Groupon’ Inc" Chlcag05 IL (US) 7,100’195 Bl * 8/2006 UnderWOOd """"""""""" 726/2
2003/0120776 Al* 6/2003 Avvarietal. 709/225
(72) Inventor: Jiaqi Guo, Chicago, IL (US) 2013/0152047 Al* 6/2013 Moorthietal. 717/124
* cited by examiner
(73) Assignee: Groupon, Inc., Chicago, IL (US)
Primary Examiner — Kevin Nguyen
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm — Alston & Bird LLP
patent is extended or adjusted under 35
U.S.C. 154(b) by 202 days. 57 ABSTRACT
A method, apparatus, and computer program product are
(21) Appl. No.: 13/861,874 disclosed to provide host-independent resource monitoring
for distributed networks. The method includes determining,
(22) Filed: Apr. 12,2013 from a set of jobs, one or more jobs to execute that monitor the
status of resources within a distributed network. The method
(51) Int.CL determines one or more environments in which to run the one
GOG6F 15/00 (2006.01) ormore jobs, and instantiates the one or more jobs with one or
GO6F 13/00 (2006.01) more environment variables for the determined one or more
GO6F 3/0484 (2013.01) environments such that the one or more jobs are configured
’ for operation in the determined one or more environments.
(52) US.CL The method accordingly displays, using a graphical user
CPC .. GOG6F 3/0484 (2013.01) interface, a job environment matrix including a list of the set
(58) Field of Classification Search ofjobs in conjunction with a running status of each of the jobs

CPC .. GO6F 9/5055; GOGF 11/3672; GOGF 3/0484
USPC 715/763-765, 740-743, 851-853,;

709/225, 245
See application file for complete search history.

in each of one or more environments. A corresponding appa-
ratus and computer program product are also provided.

20 Claims, 15 Drawing Sheets

~ ; IO 510
Control pariel 508 520 Domain actions of Arrowhead
'/ -~ £ Dashboard
. Pydduction ¢ | UAT el
Job\ Environment
Against prod hosts Against UAT hasts 518
I Jy S
BadDatabaseUrl X & OFF A OFF &
CountFailedAutomations | ¥ % OFF 512 & | RUNNING v ¥
CountInflightAutomations : ¥ &% OFF @ RUNNING w ¥
CountStucdutonations X RUNNING » X | RUNNING & X _ oo
CountValidatingCampaigns | % <% RUNNING & ¥ | RUNNING & X
CountWaitingCampaigns | ¥ &7 RUNNING ' ¥ | RUNNING %
e e e e e oo o . 5;]4,J N\ ,,,,,, e
502 504

516

U.S. Patent Apr. 5, 2016 Sheet 1 of 15 US 9,304,663 B1

104
106 .~ 106 106
| Host | Host Host
U
| 108
— 112
- |
|
Resources Data b dencies |~ 114
Storage ependencies

FIG. 1

US 9,304,663 B1

Sheet 2 of 15

Apr. 5, 2016

U.S. Patent

¢ Old

¥0¢
| 9®8eiols ’

eyeq

A

]

90¢
801
10}99)|0D
80¢
0lLc
JOJIUON
H 0} swayshAg

801

! v
R aulbug S0INID]
MOIPIOM 1S3
abesn NdoD s}sanbay
Aq ajeos-ony Aq ajeos-ojny
vol 901 901 1
10398}10D
80¢) i
OtLe aoeIsu|
lojuopy
0} swaysAs c0c
|

U.S. Patent Apr. 5, 2016 Sheet 3 of 15 US 9,304,663 B1

300
302 304 306
User Interface « s Processor |l Communications
Interface
v 308
Memory

FIG. 3

U.S. Patent Apr. 5, 2016 Sheet 4 of 15 US 9,304,663 B1

402

Determine one or more jobs to execute

v 404

Determine one or more environments in which
to run the one or more jobs, wherein the one
or more environments are defined using one

or more environment variables

406

A 4

Instantiate the one or more jobs with the one
or more environment variables

v 408

Display a job environment matrix including a
list of the set of jobs in conjunction with a
running status of each of the jobs in each of

one or more environments

FIG. 4

US 9,304,663 B1

Sheet 5 of 15

Apr. 5, 2016

U.S. Patent

PIROGRISRQ Mu

PEOYMOLIY JO SHONOE UIBUIO(]

G old

916

HNeseqeje(]pey

JUDUIIOIIALE \ gof

U.S. Patent Apr. 5, 2016 Sheet 6 of 15 US 9,304,663 B1

602

Receive instructions to run, stop, suspend
running of, or resume running an instance

ofajob

604

Y

Run, stop, suspend running of, or resume
running the instance of the job based on the

received instructions

FIG. 6

U.S. Patent

Apr. 5, 2016 Sheet 7 of 15

702
Display a job creation interface
v 704
Receive abstract job parameters
! 706
Create a new job based on the abstract job
parameters

FIG. 7a

708

Display a job editing interface

710

A 4

Receive instructions for updating the abstract
job parameters of a selected job

712

A 4

Updating the selected job based on the
received instructions

FIG. 7b

US 9,304,663 B1

US 9,304,663 B1

Sheet 8 of 15

Apr. 5, 2016

U.S. Patent

sjleyap qol upa .7

simap qof [

SuoToR
SUORBEUIOMYPMSIING) gof

8 'Old

{¥soHgqubledwed}$ sajgeea painbay
{ bursseoooad, ‘ pessadoadun,) NI SN3E3S HEEZEM

UOTITUT ISP BGOTIPWOINe HOET Aswonb s
(+)INOOD EOTTIES

PESUMO.LIR [PEBUMOLIE DJOMSSEA/UIBOT
JBALI Pl IbsALITWIOD 1IBALIT Bseqeieg
pesymoiie/{3soHqqubiedwen }$//:bsAwiogpl :un eseqeieqg
uoneuwLio oo 105
* x x x 01/6S-€ ‘9Npayos wogniaxg
TONS iompsN
suny Aqg paeasd
sa3egs Buissenosd pue pessasoldun Ul PNIS SUORBWOINE WNCD uondLDsacl

BuptouldpozesdIdNC pT Gor

SUCTIBUIOM PIUGIUNOD) [Sweu Gor

uoewIoill qof iseq

S[IEIRP SUOTIRWIOINYYITIGIUNO) o

U.S. Patent

Apr. §, 2016 Sheet 9 of 15

902

Display an environment creation interface

904

Receive one or more environment variables

906

Y

Create a new environment based on the
received one or more environment variables

FIG. 9a

208

Display an environment editing interface

910

v

Receive instructions for updating the
parameters of the selected environment

912

Y

Updating the selected environment based on
the received instructions

FIG. 9b

US 9,304,663 B1

US 9,304,663 B1

Sheet 10 of 15

Apr. 5, 2016

U.S. Patent

SiiEYep JUBLULCAIT [

SUDHIE UORINPOILJ FIMIUOIALT

|
A
_
‘

| Pa12jas 212j2q 3¢ | | saBueyd 3aeg [|

~ BILBA = A_ B BLOe Eﬁi }$ ¥
e
M EHER-E ={ _ By S
M B BA = { w S B Tm..,m‘i $ [4
| BnpEs = { H BUeL ,E;%Wﬁm;i 1$ 1
e S3|qeleA MBU PPy

0ST"€4°02°0T| — {ssoHqqubledwen}s =
anfes [qeIRA Jureu J[qETe 19[S

sa[qertea AJIpoy

| soBueLp dAeS

sisoy poud 3suteby ‘UORALDSST

. UOL3ONPOUY | PLUEN JUBLILOALT

YWAIPDT9(904MOSEINZAIS -PI IUBLLOLALT

HORONPOL] JUSUILOILAV 1IDH

US 9,304,663 B1

Sheet 11 of 15

Apr. 5, 2016

U.S. Patent

Ll "Old

smels Gunges U subieduies Jo saquin - subiedisesBunieaunosy

smeps Gugepea vy subledwes Jo sequinu Junoy - sufedwe;BunepyesgEnoD

sepe)s Buisseooad pur passacosdiin Ul NS SUORRIUOINE JLNCT - SHONRUICGN TP NISIUNOD
smpe Supunsad pue Suiddens ‘Buissanold Ul SUGOPWOING JUNOY - SUOKBLIYMALBIJULIUNOD
0497 INPRURS SMEIS W SUQREWIOINE JUNDD - SUCRBUICHY B3|ISuno’y

e} oy pauBisaq - pNeseqEEped

LR R I 2 B

20

SIS0Y LW 1BUedy - 1y .
SIS0 poad Jsuelby - voRgenposd =

STUISUIIOITALTH

MDU LU0 SERNURL 7 Ano50 __:5 MIBU> pay - ofe saqnuil gT papa|ios ¢y Ansay
O R SINTNNMY subledieBUIPAUNNG 1vn

MOU WO SEINUIL {7 1IN0 JIM 33D Pl © ofe ssanuny 0T papaqios T inssy

v & OMNINNAY subedwenBunepifeAIunos 1vn

AOU LUOYY SSINUILE £ INT00 [|IM X80 IxeN © obe seynuiu g payps|jod £ Ansay
o B SN M SUOReLLCNYYHOMSIUNOD A%

MOU JIOLS STRNUNIU O JND30 |{IM ¥OBUD PN -~ 0BR SENUILU g pRios|Ios G MNsSoY
el DNINMTY SUORSMICIN v IUBIJUIIUNGD Axn

AROU LUIQAY SSANUIWL £ JNJ30 M XPRUD PEN © o' S33NUIW £ PSIRS|o0 § JNsaY

w gl SMINNAY SURRBUGINYPS||e-Bunas L

MGU WG SSANLIU Z N300 J)iv dRaUe PEN © ofie ssqnuul g7 pepafos g insay

OMINNAY subwedieyBuqeasjuno LOIPIN A
IO MOU DIESLD €5 MOU WO SOINUIY | 00 I SRade PN © obe segnu 01 pagonue @ 3Insod
qof mou oo g3 | O [SNINNMY suSiedwenBunepeAINDD ueIpPNposd
pued paues 2 Aou Emu\n_u-\ \mmum—wu_ _“.‘_<=<.=‘h\ Wy y.__l_'mnw“a.ﬁm l—m-()(.:K :umUnu.—.mmw M,—um.uyz. . nwxmmm -.Mu.#?ﬂ:;rwu .W‘ wuru..ﬂm-um_cu au amunu
................ 1P BiBwop 1A 1 | s) ONINNMH SUOREUICINAOMSIINGT HenANpoid
T uomsuod pup 950
................................... . SRS) qof TUSUIREOTTALTH
preaqused i
EIYMOITH JO SUTOTIDY UL
pEIM ¥ i t a fangzia e vty

U.S. Patent

; 10 VARGHARER) |
s domain_rama VARCHAR(2) |y
7> dessrption VARCHAR {255}

o W use VARGHARB]
< ovengr_grouns VARCHARZSS Y |4

= version INT{$1)

i doman_user 38 VARCHAR[AZ) |
4 doman_id VARCHARE2) |
o usBr_T VARCHAR(E)
<y user_iote VARCHAR(S)

» aporaved_ty VARGHAR(8Y

Apr. 5,2016 Sheet 12 of 15 US 9,304,663 B1
1206 ™
1208 N
= % b3
environment_id VARGHAR(SE) :
I - environment_name VARGHAR(I2) | fiatle_id VARCHAR{32)
|) gascrntion VARCHAR(285) ‘ varable_name VARCHAR{32)
_______ s versien INT{HT) f"““ - > variable_ystue VARCHAR(2EE)
————————— 1 4 domain_ VARGHAR(I2) srvionmEnt_id VARCHAR|32)
: wher_user VARGHAR(E)
|
|
|
|
|
|
|
1210~ ;e -
|
|
¢ Kb I VARGHAR(32) 1216 "\\ A

% job_name WARCHAR(82)

/> description VARCHAR(255)

3 owngr_wser VARCHAR(S)

< damain_id YARCHAR{I2)

< soneduls type VARCHAR(B)

Ot sehedide_exprassin VARCHAR|32)
< collecior_type YARCHARIS)

waesion INT(11]

1212
S
&%maﬁfﬁ]

callecter_id VARCHAR| 82}
» collecler,_clasy, ame VARGHARESS)
»aws_access_key id VARCHARGZ) |
s awrs_secrat_key VARCHAR(S4) }
Vr attribitz_1 VARCHARSZ) j
4 altriile 2 VARCHARSZ)

colletlor, ¢ YARCHAR32) |
L jdbe_ut YARCHAR[23E)

i
!
|
 usemams VARCHAR(SZ) |
.; |

|
|
i
i
|

FIG. 12

natance_id VARCHAR(32)

‘5 < ob i VARCHAR{32)

s ervioimant_id YARCHAR]3ZY
aaused BIT(M)

U.S. Patent

Apr. 5,2016 Sheet 13 of 15 US 9,304,663 B1
1302
Display a domain editing interface
v 1304
Receive instructions for updating the list of
jobs or the list of environments associated
with a domain
v 1306
Store the updated domain
FIG. 13a
1308
Display a permissions editing interface
v 1310
Receive instructions for updating the list of
users or the access levels of each user of the
list of users
v 1312

Store the updated domain

FIG. 13b

U.S. Patent Apr. 5, 2016 Sheet 14 of 15 US 9,304,663 B1

1402

Receive a communication, created by a job
instance, from an interface

1404

Y

Determine an environment to which to
transmit a query based on the received

communication

1406

\ 4

Transmit a resource query to a collector
located in the environment

Y

1408

\ 4

Receive result information from the collector

! 1410

Store the result information for viewing using
the interface

FIG. 14

U.S. Patent Apr. 5, 2016 Sheet 15 of 15 US 9,304,663 B1

1502

Receive a resource query from an interface
via computer infrastructure

1504

4

Query a resource identified in the resource
query

1506

Receive result information from the resource

1508

A 4

Transmit result information to the computer
infrastructure

FIG. 15

US 9,304,663 B1

1

CENTRALIZED, SCALABLE, RESOURCE
MONITORING SYSTEM

TECHNOLOGICAL FIELD

Example embodiments of the present invention relate gen-
erally to monitoring resources in distributed network and,
more particularly, to a method and apparatus for centralized
and scalable monitoring of a resource.

BACKGROUND

Applicant has discovered problems with current methods
for monitoring remote resources in scalable computer net-
works. Through applied effort, ingenuity, and innovation,
Applicant has solved many of these identified problems by
developing a solution that is embodied by the present inven-
tion, which is described in detail below.

BRIEF SUMMARY

Accordingly, a method, apparatus, and computer program
product are provided that enable host-independent resource
monitoring for distributed networks.

In a first example embodiment, an apparatus is provided.
The apparatus may include a processor and a memory, the
memory storing computer program code that, when executed
by the processor, causes the apparatus to determine, from a set
of jobs, one or more jobs to execute, wherein the one or more
jobs are configured to monitor the status of resources within
a distributed network. The computer program code, when
executed by the processor, further causes the apparatus to
determine one or more environments in which to run the one
or more jobs, wherein the one or more environments are
defined using one or more environment variables, and instan-
tiate the one or more jobs with the one or more environment
variables for the determined one or more environments such
that the one or more jobs are configured for operation in the
determined one or more environments. In addition, the com-
puter program code, when executed by the processor, further
causes the apparatus to display, using a graphical user inter-
face, a job environment matrix including a list of the set of
jobs in conjunction with a running status of each of the jobs in
each of one or more environments.

In one embodiment, the computer program code, when
executed by the processor, further causes the apparatus to
receive, using the graphical user interface, instructions to run,
stop, suspend running of; or resume running an instance of a
job displayed in the job environment matrix in an environ-
ment displayed in the job environment matrix, and start, stop,
suspend, or resume an instance of the job based on the
received instructions.

In another embodiment, the computer program code, when
executed by the processor, further causes the apparatus to,
display, using the graphical user interface, a job creation
interface, receive, using the graphical user interface, abstract
job parameters, create a new job based on the received
abstract job parameters, and store the new job in the memory.
In this regard, the abstract job parameters may include an
execution schedule of the job and a collector that performs
resource monitoring operations. In one such embodiment, the
computer program code, when executed by the processor,
further causes the apparatus to, display, using the graphical
user interface, a job editing interface, wherein the job editing
interface displays abstract job parameters of a selected job,
receive, using the graphical user interface, instructions for
updating the abstract job parameters of the selected job,

10

15

20

25

30

35

40

45

50

55

60

65

2

update the selected job based on the received instructions, and
store the updated job in the memory.

In yet another embodiment, the computer program code,
when executed by the processor, further causes the apparatus
to display, using the graphical user interface, an environment
creation interface, receive, using the graphical user interface,
an environment variable, create a new environment based on
the received environment variable, and store the new environ-
ment in the memory. In this regard, the environment variable
comprises a network address. In one such embodiment, the
computer program code, when executed by the processor,
further causes the apparatus to, display, using the graphical
user interface, an environment editing interface, wherein the
environment editing interface displays parameters of a
selected environment, receive, using the graphical user inter-
face, instructions for updating the parameters of the selected
environment, update the selected environment based on the
received instructions, and store the updated environment in
the memory.

In one embodiment, the computer program code, when
executed by the processor, further causes the apparatus to
display, using the graphical user interface, a summary of
running jobs in conjunction with a status of each of the run-
ning jobs.

In another embodiment, the memory stores a domain hav-
ing a list of jobs, a list of environments, and permissions
information, wherein the permissions information indicates a
list of users who may access the domain and access levels of
the list of users. In this regard, the computer program code,
when executed by the processor, further causes the apparatus
to display, using the graphical user interface, a domain editing
interface, wherein the domain editing interface displays the
list of jobs and the list of environments ofthe domain, receive,
using the graphical user interface, instructions for updating
the list of jobs or the list of environments, update the domain
based on the instructions, and store the updated domain in the
memory. In another such embodiment, the computer program
code, when executed by the processor, further causes the
apparatus to display, using the graphical user interface, a
permissions editing interface, wherein the permissions edit-
ing interface displays the list of users who may access the
domain and access levels of each user of the list of users,
receive, using the graphical user interface, instructions for
updating the list of users or the access levels of each user of
the list of users, update the domain based on the instructions,
and store the updated domain in the memory.

In a second example embodiment, a method is provided.
The method includes determining, from a set of jobs, one or
more jobs to execute, wherein the one or more jobs are con-
figured to monitor the status of resources within a distributed
network. The method further includes determining one or
more environments in which to run the one or more jobs,
wherein the one or more environments are defined using one
or more environment variables, and instantiating, using a
processor, the one or more jobs with the one or more envi-
ronment variables for the determined one or more environ-
ments such that the one or more jobs are configured for
operation in the determined one or more environments. The
method additionally includes displaying, using a graphical
user interface, a job environment matrix including a list of the
set of jobs in conjunction with a running status of each of the
jobs in each of one or more environments.

In a third example embodiment, a computer program prod-
uct is provided. The computer program product includes a
computer-readable storage medium storing computer pro-
gram code that, when executed by an apparatus, causes the
apparatus to determine, from a set of jobs, one or more jobs to

US 9,304,663 B1

3

execute, wherein the one or more jobs are configured to
monitor the status of resources within a distributed network.
The computer program code, when executed by the proces-
sor, further causes the apparatus to determine one or more
environments in which to run the one or more jobs, wherein
the one or more environments are defined using one or more
environment variables and instantiate the one or more jobs
with the one or more environment variables for the deter-
mined one or more environments such that the one or more
jobs are configured for operation in the determined one or
more environments. The computer program code, when
executed by the processor, also causes the apparatus to dis-
play, using a graphical user interface, a job environment
matrix including a list of the set of jobs in conjunction with a
running status of each of the jobs in each of one or more
environments.

In a fourth example embodiment, an apparatus is provided.
The apparatus includes means for determining, from a set of
jobs, one or more jobs to execute, wherein the one or more
jobs are configured to monitor the status of resources within
a distributed network. The apparatus further includes means
for determining one or more environments in which to run the
one or more jobs, wherein the one or more environments are
defined using one or more environment variables, and means
for instantiating, using a processor, the one or more jobs with
the one or more environment variables for the determined one
or more environments such that the one or more jobs are
configured for operation in the determined one or more envi-
ronments. The apparatus additionally includes means for dis-
playing, using a graphical user interface, a job environment
matrix including a list of the set of jobs in conjunction with a
running status of each of the jobs in each of one or more
environments.

The above summary is provided merely for purposes of
summarizing some example embodiments to provide a basic
understanding of some aspects of the invention. Accordingly,
it will be appreciated that the above-described embodiments
are merely examples and should not be construed to narrow
the scope or spirit of the invention in any way. It will be
appreciated that the scope of the invention encompasses
many potential embodiments in addition to those here sum-
marized, some of which will be further described below.

BRIEF DESCRIPTION OF THE DRAWINGS

Having thus described certain example embodiments of
the present disclosure in general terms, reference will now be
made to the accompanying drawings, which are not necessar-
ily drawn to scale, and wherein:

FIG.1 illustrates an example system within which embodi-
ments of the present invention may operate;

FIG. 2 illustrates a block diagram showing an example
system, in accordance with some example embodiments of
the present invention;

FIG. 3 shows a block diagram of an apparatus that may be
specifically configured in accordance with an example
embodiment of the present invention;

FIG. 4 illustrates a flowchart describing example opera-
tions for managing one or more monitoring jobs in a distrib-
uted network in accordance with some example embodi-
ments;

FIG. 5 illustrates an example job environment matrix in
accordance with some example embodiments;

FIG. 6 illustrates a flowchart describing example opera-
tions for receiving monitoring instructions using a web user
interface in accordance with some example embodiments;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 7a and 7b illustrate flowcharts describing example
operations for creating and editing jobs, in accordance with
some example embodiments;

FIG. 8 illustrates a job details interface in accordance with
some example embodiments;

FIGS. 94 and 95 illustrate flowcharts describing example
operations for creating and editing environments, in accor-
dance with some example embodiments;

FIG. 10 illustrates an environment editing interface in
accordance with some example embodiments;

FIG. 11 illustrates an example dashboard overview in
accordance with some example embodiments;

FIG. 12 illustrates a data model of one example domain in
accordance with some example embodiments;

FIGS. 13a and 135 illustrate flowcharts describing
example operations for editing attributes of a domain in
accordance with some example embodiments;

FIG. 14 illustrates a flowchart describing example opera-
tions for managing one or more monitoring jobs in a distrib-
uted network from the perspective of a host in accordance
with some example embodiments; and

FIG. 15 illustrates a flowchart describing example opera-
tions for managing one or more monitoring jobs from the
perspective of a collector within a resource environment in
accordance with some example embodiments.

DETAILED DESCRIPTION

Some embodiments of the present invention will now be
described more fully hereinafter with reference to the accom-
panying drawings, in which some, but not all embodiments of
the inventions are shown. Indeed, these inventions may be
embodied in many different forms and should not be con-
strued as limited to the embodiments set forth herein; rather,
these embodiments are provided so that this disclosure will
satisfy applicable legal requirements. Like numbers refer to
like elements throughout.

As used herein, the terms “data,” “content,” “information,”
and similar terms may be used interchangeably to refer to data
capable of being transmitted, received, and/or stored in accor-
dance with embodiments of the present invention. Thus, use
of'any such terms should not be taken to limit the spirit and
scope of embodiments of the present invention. Further,
where a computing device is described herein to receive data
from another computing device, it will be appreciated that the
data may be received directly from the another computing
device or may be received indirectly via one or more inter-
mediary computing devices, such as, for example, one or
more servers, relays, routers, network access points, base
stations, hosts, and/or the like, sometimes referred to herein
as a “network.” Similarly, where a computing device is
described herein to send data to another computing device, it
will be appreciated that the data may be sent directly to the
another computing device or may be sent indirectly via one or
more intermediary computing devices, such as, for example,
one or more servers, relays, routers, network access points,
base stations, hosts, and/or the like.

29 4¢

Overview

A method, apparatus, and computer program product are
provided in accordance with an example embodiment of the
present invention in order to facilitate improved resource
monitoring in a scalable computing environment.

Historically, a common issue in deploying infrastructure
capacity to support a computer-based application is that the
infrastructure necessary to ensure operation and stability of

US 9,304,663 B1

5

the application is not static, but can vary significantly; during
times of peak user traffic, the required capacity can be sig-
nificantly higher than during times of low user traffic. How-
ever, deploying infrastructure sufficient to handle the peak
user traffic creates some degree of waste, as some amount of
infrastructure may sit idle during non-peak time periods.
Alternatively, deploying any capacity less than this amount
may result in a poor user experience during peak user traffic.
Accordingly, to eliminate this potential for waste and/or
insufficient infrastructure capacity, computer infrastructure is
often scalable, such that the number of hosts can be changed
dynamically to address user traffic load in real-time. In this
regard, a host may comprise a computing system in a com-
puting network that is configured to perform network control
functions and to provide computational and/or database
access to one or more computing systems or users in the
computing network.

As a side effect, however, introducing scalability into a
computing environment may add complexity to resource
monitoring. A resource may comprise any data processing
component that may perform a job or task, and may include,
but not limited to, databases, other types of storage, input/
output devices, processing units, data files, and programs.
Resources may often be monitored for availability, database
connectivity, connection time, service availability, response
time, order drops, or service calls returning unexpected val-
ues (e.g., SELECT COUNT(*) FROM business_objects
WHERE state="stuck’ returns non-zero). Typically, resource
monitors run in the computer infrastructure on hosts that
create the connection between users and a resource (e.g., a
database). In a scalable environment, though, a resource
monitor may only be operational when residing on an actively
employed host, so there may be low traffic situations when a
given host is not used, and therefore when the resource moni-
tor residing on that host is not operating. To surmount this
problem, resource monitors may be installed on every pos-
sible host in the scalable system, but another problem is
created in this instance: when resource monitors reside on
every possible host, then the resource monitors themselves
may burden the system with duplicative operations.

To surmount this duplicative monitoring problem, resource
monitors may run on every host, but with additional software
establishing a leader election between the active hosts. Using
leader election software, each of the active hosts may com-
municate with each other to determine which host will moni-
tor a particular resource at a given time. However, although
developing software to perform leader election among active
hosts may be possible, it would require robust communica-
tion between the various hosts, and therefore the software
must be developed specifically for each set of hosts in which
the leader election software would run. Accordingly, even if
this is technically possible, because leader election would
need to be specifically implemented for each set of hosts,
leader election may not be practical for large-scale implemen-
tations in which there are many separate sets of hosts. Instead
of patching a system with one script after another, it makes
sense for a solution generated independently from any par-
ticular implementation or workflow to be monitored. Thus,
another solution is required that avoids the need to develop
leader election software and which allows user to continue to
add monitors via a web user interface.

As a system grows, it becomes important for engineers to
be able to easily define monitoring jobs (e.g., a SQL query or
the like) and run them with specified schedules, collect
results, create alarms, and all without the burden of specifi-
cally coding, building or deploying distinct software imple-
mentations. It’s also important for a system to execute moni-

10

15

20

25

30

35

40

45

50

55

60

65

6

tor jobs based on a strictly defined schedule regardless of how
the system scales up and down.

Embodiments of the present invention provide a central-
ized monitoring system that implements monitors and alarms
around shared resources such as databases and related ser-
vices by repeatedly running user-defined jobs. In this regard,
rather than having resource monitors running on one or more
hosts in the scalable network and pushing data to an end-user
responsible for resource management, in some example
embodiments of the present invention, a resource monitor
may reside outside of the hosts, and may be developed to pull
relevant information from the resource itself via the set of
hosts. As described in greater detail below, resources may be
thus be monitored without consideration of the scalability of
the network, the number of hosts, or any other issues related
to the specific computer infrastructure using which the
resource is accessed.

System Architecture

The method, apparatus, and computer program product of
the present invention may be embodied by any of a variety of
devices. For example, the method, apparatus, and computer
program product of an example embodiment may be embod-
ied by a networked device, such as a server or other network
entity, configured to communicate with one or more devices,
such as one or more client devices. Additionally or alterna-
tively, the computing device may include fixed computing
devices, such as a personal computer or a computer worksta-
tion. Still further, an example embodiment may be embodied
by any of a variety of mobile terminals, such as a portable
digital assistant (PDA), mobile telephone, smartphone, lap-
top computer, tablet computer, or any combination of the
aforementioned devices.

In this regard, FIG. 1 discloses an example computing
system within which embodiments of the present invention
may operate. Users may access an environment 108 (which
may include cloud resources 110, data storage resources 112,
and/or other dependencies 114) from the Internet 102 (or
another computational network) via computer infrastructure
104 (i.e., middleware). As noted, an environment 108 may
include components, but may further be understood as having
a distinct network address reachable from the Internet 102.
Furthermore, infrastructure 104 may comprise a single host
system, multiple hosts, or may be a scalable infrastructure
that could comprise a variable number of hosts 106. As
described above, traditional resource monitoring applications
are stored on and run from this computer infrastructure 104.

By contrast, embodiments of the present invention may run
outside of the scalable elements of a system, such as, for
example, on an end-user device. FIG. 2 illustrates this fact
with a block diagram showing another example system ofthe
present invention. As can be seen, an interface 202 (e.g., aweb
user interface, a mobile application, a client device, a kiosk,
etc.) comprises the resource monitoring application that a
user may use to enable host-independent monitoring of a
scalable computer network. The interface 202 is configured to
enable a user may use to create jobs, environments, define
execution schedules, and start, stop, suspend, or resume indi-
vidual job instances.

As further shown in FIG. 2, the interface 202 is in data
communication with computer infrastructure 104 (i.e.,
middleware) including one or more hosts 106. In this
example, the hosts 106 may comprise one or more RESTful
service hosts (e.g., implemented using HTML and represen-
tational state transfer (REST) principles) and one or more
workflow engine hosts, as well as specific resources, such as

US 9,304,663 B1

7

data store 204. In some examples, the RESTful service is the
component that handles user traffic from the interface 202
(and potentially other systems that integrate with the system),
and automatically scales based on the number of users inter-
acting with computer infrastructure 104. The RESTful ser-
vice, in some such examples, is configured to call or other-
wise access remote resources like data store 204 and the one
or more workflow engine hosts. In one example, the RESTful
service is implemented using a JAXRS (Java API for REST-
ful services) interface, wherein the JAXRS interface may be
shared between the interface 202, the RESTful service and
other elements that may integrate with the system. The work-
flow engine includes decision workers and activity workers
that call the workflow engine and perform actions against the
system database. The workflow engine hosts output job
results into a log file which eventually is displayed as a graph.
The workflow engine is the component of computer infra-
structure 104 that handles backend requests and, accordingly,
automatically scales not based on user requests, but based
upon the number of jobs to be performed (e.g., CPUusage). In
some embodiments, the interface 202, the RESTful service
and the workflow engine may reside in a single Java virtual
machine (JVM). Of course, in other embodiments, the com-
puter infrastructure middleware 104 may be implemented
using other technology and may or may not be scalable. One
benefit of embodiments of the present invention is that no
specific computer middleware infrastructure is required to
monitor resources.

When a resource monitoring job is instantiated by the
interface 202 (e.g., such as is described below in connection
with FIG. 4), a resource monitoring request is communicated
to computer infrastructure 104 according to an execution
schedule (e.g., every 5 minutes) and managed in conjunction
with other pending requests according to a workflow 206 that
organizes processing resources in a distributed network. In
this regard, individual requests are passed to a collector 208 in
an environment 108 (and there is a one to one correspondence
between each job instance and a particular collector 208). Of
course, there may be a different environment 108 for each
resource that is monitored. For each such resource being
monitored, the respective collector 208 gathers relevant
resource information from the resource (e.g., system to moni-
tor) 210. Subsequently, the gathered information is returned
via the computer infrastructure 104 for eventual presentation
to the user via interface 202. Of course, to properly enable
monitoring of resources, each environment 108 may be con-
figured to store source code enabling operation of respective
collector 208.

Regardless of the type of device within which the interface
202 resides, an apparatus 300 that may be specifically con-
figured to facilitate improved resource monitoring in a scal-
able computing environment in accordance with an example
embodiment of the present invention is illustrated in FIG. 3. It
should be noted that while FIG. 3 illustrates one example
configuration of an apparatus that may run the interface 202,
numerous other configurations may also be used to imple-
ment embodiments of the present invention (for instance, in
examples described herein, the apparatus 300 may show an
example configuration of a host within computer infrastruc-
ture 104 or a collector within an environment 108). As such,
in some embodiments, although elements are shown as being
in communication with each other, hereinafter such elements
should be considered to be capable of being embodied within
the same device or within separate devices.

Referring now to FIG. 3, the apparatus 300 may include or
otherwise be in communication with a processor 304, a
memory 308, a communication interface 306, and a user

10

15

20

25

30

35

40

45

50

55

60

65

8

interface 302. In some embodiments, the processor (and/or
co-processor or any other processing circuitry assisting or
otherwise associated with the processor) may be in commu-
nication with the memory device via a bus for passing infor-
mation among components of the apparatus. The memory
308 may be non-transitory and may include, for example, one
or more volatile and/or non-volatile memories. In other
words, for example, the memory may be an electronic storage
device (e.g., a computer readable storage medium). The
memory may be configured to store information, data, con-
tent, applications, instructions, or the like, for enabling the
apparatus to carry out various functions in accordance with an
example embodiment of the present invention.

The processor 304 may be embodied in a number of dif-
ferent ways and may, for example include one or more pro-
cessing devices configured to perform independently. Addi-
tionally or alternatively, the processor may include one or
more processors configured in tandem via a bus to enable
independent execution of instructions, pipelining, and/or
multithreading.

In an example embodiment, the processor 304 may be
configured to execute instructions stored in the memory 308
or otherwise accessible to the processor. Alternatively or
additionally, the processor may be configured to execute
hard-coded functionality. As such, whether configured by
hardware or software methods, or by a combination thereof,
the processor may represent an entity (e.g., physically
embodied in circuitry) capable of performing operations
according to an embodiment of the present invention while
configured accordingly. Alternatively, as another example,
when the processor is embodied as an executor of software
instructions, the instructions may specifically configure the
processor to perform the algorithms and/or operations
described herein when the instructions are executed.

Meanwhile, the communication interface 306 may be any
means such as a device or circuitry embodied in either hard-
ware or a combination of hardware and software that is con-
figured to receive and/or transmit data from/to a network
and/or any other device or module in communication with the
apparatus 300. In this regard, the communication interface
may include, for example, an antenna (or multiple antennas)
and supporting hardware and/or software for enabling com-
munications with a wireless communication network. Addi-
tionally or alternatively, the communication interface may
include the circuitry for interacting with the antenna(s) to
cause transmission of signals via the antenna(s) or to handle
receipt of signals received via the antenna(s). In some envi-
ronments, the communication interface may additionally or
alternatively support wired communication. As such, for
example, the communication interface may include a com-
munication modem and/or other hardware/software for sup-
porting communication via cable, digital subscriber line
(DSL), universal serial bus (USB), or other mechanisms.

In some embodiments, the apparatus 300 may include a
user interface 302 that may, in turn, be in communication with
processor 304 to provide output to the user and, in some
embodiments, to receive an indication of a user input. As
such, the user interface may include a display and, in some
embodiments, may also include a keyboard, a mouse, a joy-
stick, a touch screen, touch areas, soft keys, a microphone, a
speaker, or other input/output mechanisms. The processor
and/or user interface circuitry comprising the processor may
be configured to control one or more functions of one or more
user interface elements through computer program instruc-
tions (e.g., software and/or firmware) stored on a memory
accessible to the processor (e.g., memory 308, and/or the
like).

US 9,304,663 B1

9

Job Abstraction

One aspect that in some examples enables greater practi-
cality of embodiments of the present invention is the concept
of job abstraction. A job defines the action to be performed
and an execution schedule to monitor a resource. In a job, the
execution schedule defines when the job runs and the collec-
tor defines what action a job performs. As abstracted, when a
job is defined, it can be defined with a ${variable} expression
which will later be replaced by environment variable values
defined in environments at the time the job runs. By general-
izing the definition of a monitoring job, instances of the job
can be quickly created and deployed to a variety of resource
environments so thata user is spared the cumbersome process
of manually coding each desired job. In this regard, while an
abstraction may be referred to as a job, a job instance is an
actual implementation of a job running in a particular envi-
ronment.

In this respect, an environment is the context in which a job
runs. An environment can define one or more environment
variables (e.g., host name or IP address of a database, URL
fragment or the like) that can be used in conjunction with the
job definition to create a job instance that runs in the environ-
ment. Upon creation of a domain, a “Production” environ-
ment is additionally created by default. If a job definition
contains the expression ${variableName}, the expression
will be replaced by variable values defined in the environment
within which the job is intended to run. In some examples, if
a job requires a set of variables, it can only run in an environ-
ment that defines all of the required variables. Accordingly,
using job abstractions in conjunction with environment vari-
ables helps user define a set of jobs and run them in multiple
environments, such as user acceptance testing (UAT) and/or
production environments.

Accordingly, a user may turn on and off, or suspend or
resume a job instance via an interface, such as interface 202.
In an instance in which a job instance is started, the computer
infrastructure 104 may begin a workflow execution for the job
that continues until the job instance is stopped. For example,
although traditional resource monitoring software must be
designed from the ground up for each resource to be moni-
tored, once an abstraction of a resource is created using
embodiments of the present invention, each implementation
of the abstraction merely requires its combination with envi-
ronment-specific variables to create an instance of the job that
will monitor a specific resource.

Interface Operations

Embodiments of the present invention may be imple-
mented using interface 202, which, as previously described,
may in one example embodiment comprise a web user inter-
face. In this regard, the interface 202 may include a graphical
user interface that enables a user, another computing device
connected to the interface 202, or the like, to create monitor-
ing jobs and environments within which to run, visually iden-
tify created jobs and see their running states in a variety of
environments, and may also enable a user to, in substantially
real-time, start, suspend, resume, or stop an instance of a job.
Moreover, the interface 202 allows or otherwise enables the
creation and editing of domains that identify covered jobs and
environments, define an authorized list of users who have
access to the covered jobs and environments, and establishes
specific access rights for each authorized user.

Accordingly, FIG. 4 illustrates a flowchart containing
example operations for managing one or more monitoring
jobs in a distributed network. The operations illustrated in

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 4 may, for example, be performed by, with the assistance
of, and/or under the control of one or more of apparatus 300,
and may use processor 304, memory 308, user interface 302,
and communications interface 306. In operation 402, appa-
ratus 300 includes means, such as user interface 302, proces-
sor 304 or the like, for determining one or more jobs to
execute. In this regard, the determination of jobs to execute
may be made based on an execution schedule for each specific
job. However, as detailed below, the determination of jobs to
execute may be made by a user via a user interface 302 by
manipulating the interface 202.

Inoperation 404, the apparatus 300 further includes means,
such as user interface 302, processor 304, communications
interface 306, memory 308, or the like, for determining one or
more environments in which to run the one or more jobs. As
with the determination of jobs to execute, the determination
of'environments may be made based on an execution schedule
for each specific job or by a user via a user interface 302.

In operation 406, the apparatus 300 may include means,
such as processor 304, communications interface 306, or the
like, for instantiating the one or more jobs with the one or
more environment variables. Because each job comprises an
abstraction that requires specific environment variables for
execution, instantiation of a job includes identification, by the
apparatus 300, of environment variables necessary for execu-
tion of an instance of the job. Moreover, upon instantiating a
job, the apparatus 300 may further include means, such as
communications interface 306 or the like, for communicating
with, via the scalable computer infrastructure, the resource
identified by the job. In this regard, a resource monitor may
run an SQL SELECT query against a database every 5 min-
utes and trigger an alarm when a predefined threshold is
breached, may call a workflow service every 5 minutes to
query the number of backlog and accordingly trigger an alarm
when the backlog size breaches the threshold, or may call a
workflow service every 5 minutes to query the number of
workflow executions of given type. Alternatively, a resource
monitor may be called to perform math calculations of mul-
tiple other job results, such as calculating workflow execution
number minus the result of a SELECT query, or trigger an
alarm when the result breaches the threshold. Furthermore,
result information received as a result of running a job
instance may be communicated back via the computer infra-
structure 104 and interface 202. In one such embodiment, the
method of communication upon receipt of the result informa-
tion by interface 202 may be configurable. In one example,
users may wish to receive all result information updates via
designated communication format (e.g., email message, text
message, etc.). In one such example, users may elect to only
receive notifications upon a threshold breach. For example,
for the SQL query SELECT COUNT(*) FROM transactions
WHERE status="stuck’, a user may receive an email message
in an instance the query returns a value greater than zero.

In operation 408, the apparatus 300 may include means,
such as user interface 302, communications interface 306, or
the like, for displaying a job environment matrix including a
list of the set of jobs in conjunction with a running status of
each of the jobs in each of the one or more environments. In
this regard, as previously described, the user defines jobs and
environments, where a job can be defined with $ expressions
and an environment defines the value of the environment
variables that will be automatically inserted in place of the $
expressions. At runtime, a combination of job/environment
constitute actual job instance to run.

For example, a CountStuckTransactions SQL job may be
defined as:

US 9,304,663 B1

11

Database URL: jdbc:mysql://${databasehost}/transac-
tiondb

Database Login: dbuser/dbpassword

Connection timeout: 500 ms

Query timeout: 200 ms

SQL query: SELECT COUNT(*) FROM transactions
WHERE status&stucle

Execution Schedule: Every 10 minutes

In this example, the environment “PROD” is defined with
variable: databasehost=actual-prod-database.groupondev-
.com and the environment “UAT” is defined with variable:
databasehost=actual-uat-database.groupondev.com.

Accordingly, a generic interface 202 accordingly may dis-
play a job environment matrix, such as shown in Table 1.

TABLE 1
Job PROD UAT
CountStuckTransactions Turn On/Off Turn On/Off
AnotherJob Turn On/Off Turn On/Off

When a job instance is turned on from control panel, the
system combines the job and environment into a workflow
execution instance with all $ expressions replaced by vari-
ables in the relevant environment.

By way of further example, a user may want to run a SQL
query like “SELECT COUNT(*) FROM my_objects
WHERE state="BAD’” to monitor a number of database
objects in nonfunctioning state. Such a job may be defined as
a SQL query and may be intended to be run in a testing
database and production database. In order to enable the job
to run in the testing and execution environment, a user may
define two environments by defining a variable “database-
HostName” and define one job where
databaseHostName=*${databaseHostName}”. In this
example, the environment variable may be host name or IP
address of the database that is to be monitored.

By way of further example, a user may monitor the state of
a service by causing a HT'TP GET call to http://my-service-
test.cony/serviceState and http://my-service-prod.com/ser-
viceState. To define a single job, the user may set the URL of
the service to http://my-service-${stage} .com/serviceState in
the job definition, and define two environments, testing and
production, each of which defines variable “stage”. In this
example, the environment variable may take the form of a
fragment of URL.

FIG. 5 illustrates another example job environment matrix,
in which column 502 shows an example list of jobs and
column 504 shows an example environment (in this case, a
production environment). For each job 506, the job environ-
ment matrix illustrates the name of the job, icons enabling
deletion of the job from the matrix (508) and editing of the job
(510), a status of the job in each environment, icons enabling
the user to start an instance of the job in a specific environ-
ment (512), suspend a running instance of the job (514),
resume running a job (not shown), or stop an instance of the
jobin a specific environment (516). When an instance ofa job
cannot be started in a specific environment, an icon 518 may
be presented indicating that a problem exists. In this regard,
potential problems may indicate incorrect or missing envi-
ronment variables or an error in the abstract job parameters
used to create the job in the first place. For each environment,
an icon 520 enables editing of the environment.

Based on user icon selection, the job environment matrix
may be used to issue resource monitoring commands, as
shown in FIG. 6. In this regard, in operation 602 the apparatus

10

15

20

25

30

35

40

45

50

55

60

65

12

300 may include means, such as user interface 302, commu-
nications interface 306, or the like, for receiving, using the
graphical user interface, instructions to run, stop, suspend
running of; or resume running an instance of a job displayed
in the job environment matrix in an environment displayed in
the job environment matrix. In accordance with this instruc-
tion, in operation 604 the apparatus 300 may further include
means, such as processor 304, communications interface 306,
or the like, for starting, stopping, suspending, or resuming the
instance of the job based on the received instructions.

Of course, the graphical user interface may present other
interactive capabilities as well. In one embodiment shown in
FIG. 7a, embodiments of the present invention enable cre-
ation of a new job. For instance, in operation 702 the appara-
tus 300 may include means, such as user interface 302 or the
like, for displaying, using the graphical user interface, a job
creation interface. In operation 704, the apparatus 300 may
further include means, such as user interface 302 or the like,
for receiving, using the graphical user interface, abstract job
parameters. In this regard, the abstract job parameters may
include an execution schedule of the job and information
defining the collector that performs the previously described
resource monitoring operations. In operation 706, the appa-
ratus 300 may further include means, such as processor 304 or
the like, for creating a new job based on the received abstract
job parameters. The apparatus 300 may further include
means, such as memory 308 or the like, for storing the new
job.

Similarly, as shown in FIG. 75, the graphical user interface
may enable a user to edit an already-created job. The appara-
tus 300 may include means, such as user interface 302 or the
like, for displaying, using the graphical user interface, a job
details interface, such as that shown in FIG. 8. As illustrated
in FIG. 8, the job details interface displays the abstract job
parameters of a selected job. The apparatus 300 may further
include means, such as user interface 302 or the like, for
receiving, using the graphical user interface, selection of icon
510 to edit a job, or selection of a link on the job details
interface. Accordingly, referring now to FIG. 75, in operation
708 the apparatus 300 may include means, such as user inter-
face 302 or the like, for displaying, using the graphical user
interface, a job editing interface, wherein the job editing
interface displays abstract job parameters of a selected job.

After displaying the job editing interface, in operation 710
the apparatus 300 may further include means, such as user
interface 302 or the like, for receiving, using the graphical
user interface, instructions for updating the abstract job
parameters of the selected job. Finally, in operation 712, the
apparatus 300 may further include means, such as processor
304 or the like, for updating the selected job based on the
received instructions. Finally, the apparatus 300 may further
include means, such as memory 308 or the like, for storing the
updated job.

In addition to creating and editing a job, however, the
interface 202 enables creation and editing of specific envi-
ronments in which the user may wish to execute an instance of
the job, as shown in FIGS. 9a and 95. For instance, as shown
in operation 902 of FIG. 9a, the apparatus 300 may include
means, such as user interface 302 or the like, for displaying,
using the graphical user interface, an environment creation
interface. In operation 904, the apparatus 300 may further
include means, such as user interface 302 or the like, for
receiving, using the graphical user interface, one or more
environment variables. In this regard, environment variables
may be network addresses of resources to be monitored, or
may be any other information that may be unique to a par-
ticular environment. In operation 906, the apparatus 300 may

US 9,304,663 B1

13

further include means, such as processor 304 or the like, for
creating a new environment based on the received one or more
environment variables. The apparatus 300 may further
include means, such as memory 308 or the like, for storing the
new environment.

In a similar fashion as editing of created jobs, the graphical
user interface may enable a user to edit a created environment.
In this regard, the apparatus 300 may include means, such as
user interface 302 or the like, for displaying, using the graphi-
cal user interface, an environment details interface, that
shows the parameters of a selected environment. The appa-
ratus 300 may further include means, such as user interface
302 or the like, for receiving, using the graphical user inter-
face, selection of icon 520 to edit an environment, or selection
of a link on the environment details interface. Accordingly,
referring now to FIG. 95, in operation 809 the apparatus 300
may include means, such as user interface 302 or the like, for
displaying, using the graphical user interface, an environment
editing interface, wherein the environment editing interface
displays parameters of the selected job. FIG. 10 illustrates one
such example display.

After displaying the environment editing interface, in
operation 910, the apparatus 300 may further include means,
such as user interface 302 or the like, for receiving, using the
graphical user interface, instructions for updating the param-
eters of the selected environment. In operation 912, the appa-
ratus 300 may further include means, such as processor 304 or
the like, for updating the selected environment based on the
received instructions. In this regard, the apparatus 300 may
store the updated environment in memory 308.

Additionally, the interface 202 may enable a user to view a
“Dashboard” overview of the resource monitoring jobs. In
this regard, the apparatus 300 may include means, such as
user interface 302 or the like, for displaying, using the graphi-
cal user interface, a summary of running jobs in conjunction
with a status of each of the running jobs. In this regard, FIG.
11 discloses one example dashboard overview, which dis-
closes each running job, the number of retrieved monitoring
results collected for each job, information regarding the
schedule for each running job, and descriptive information
for each listed environment and each listed job.

Embodiments of the present invention further enable the
use of “domains” that comprises a model of a team, an orga-
nization, an entity under which jobs are grouped and accessed
with the same access control list (ACL). Accordingly,
domains enable the separation of one set of jobs from another
based on a predetermined grouping. In this regard, in each
domain, multiple jobs, multiple environments, and a user list
are defined. Depending on a user’s role, users in the user list
may modify environments or jobs in the domain, may modify
the domain itself, or may see the passwords and variables in
the domain. Within the context of a single company imple-
menting the present invention, every employee in the com-
pany may have read-only access to all domains, but not every
employee can see variable values or database passwords in a
specific domain without membership in that domain.

In this regard, the apparatus 300 may include means, such
as memory 308 or the like, for storing a domain having a list
of' jobs, a list of environments, and permissions information.
In some example embodiments, the permissions information
indicates a list of users who may access the domain and access
levels of the list of users. FIG. 12 shows a data model of one
example domain. Each table in FIG. 12 illustrates a discrete
element of the domain having the listed set of attributes. For
instance, item 1202 indicates the domain element itself, with
attributes defining an ID, a name, a description, relevant
owner information, and a version. Item 1204 indicates the

10

15

20

25

30

40

45

50

55

60

14

attributes of any given domain user. Item 1206 indicates the
attributes of an environment within a domain, and item 1208
contains environment variables for environment 1206. Simi-
larly, item 1210 indicates a particular job and associated
attributes, while items 1212 and 1214 indicate collector infor-
mation for that particular job. Finally, item 1216 indicates an
instance of a job 1210 running in environment 1206, along
with its associated attributes.

The interface 202 may enable a user to update the jobs
and/or environments in a given domain, as shown in FIG. 13a.
For instance, in operation 1302 the apparatus 300 may
include means, such as user interface 302 or the like, for
displaying, using the graphical user interface, a domain edit-
ing interface, wherein the domain editing interface displays
the list of jobs and the list of environments of the domain. In
operation 1304, the apparatus 300 may further include means,
such as user interface 302 or the like, for receiving, using the
graphical user interface, instructions for updating the list of
jobs or the list of environments. Accordingly, the apparatus
300 thus include means, such as processor 304 or the like, for
updating the domain based on the instructions. Finally, in
operation 1306, the apparatus 300 may include means, such
as memory 308, for storing the updated domain.

Similarly, the interface 202 may enable a user to update the
permissions information in a given domain, as shown in FI1G.
135. In this regard, in operation 1308, the apparatus 300 may
include means, such as user interface 302 or the like, for
displaying, using the graphical user interface, a permissions
editing interface, wherein the permissions editing interface
displays the list of users who may access the domain and
access levels of each user of the list of users. In operation
1310, the apparatus 300 may further include means, such as
user interface 302 or the like, for receiving, using the graphi-
cal user interface, instructions for updating the list of users
and/or the access levels of each user of the list of users.
Subsequently, in operation 1312, the apparatus 300 thus
include means, such as processor 304 or the like, for updating
the domain based on the instructions, and means, such as
memory 308, for storing the updated domain.

Host Operations

FIG. 14 illustrates a flowchart containing example opera-
tions for managing a monitoring job from the perspective of
computer infrastructure 104 (e.g., one or more hosts 106
within the computer infrastructure 104). The operations illus-
trated in FI1G. 14 may, for example, be performed by, with the
assistance of, and/or under the control of one or more of a
device, such as apparatus 300, and may use processor 304,
memory 308, user interface 302, and communications inter-
face 306. In operation 1402, apparatus 300 includes means,
such as communication interface 306 or the like, for receiving
acommunication, created by a job instance, from an interface
202. In this regard, a job instance is created in response to user
input via a job environment matrix displayed by the interface
202.

In operation 1404, the apparatus 300 further includes
means, such as processor 304 or the like, for determining an
environment to which to transmit a query based on the
received communication. The determination of the environ-
ment may be made based on the environment variables
included in the job instance.

In operation 1406, the apparatus 300 may include means,
such as communications interface 306 or the like, for trans-
mitting a resource query to a collector located in the deter-
mined environment. Similarly, in operation 1408, the appa-
ratus 300 may include means, such as communications

US 9,304,663 B1

15

interface 306 or the like, for receiving result information from
the collector. As shown in FIG. 14, these operations may cycle
indefinitely until suspension or stoppage of the corresponding
job instance.

Finally, in operation 1410, the apparatus 300 may include
means, such as communications interface 306, memory 308,
or the like, for storing the result information (in memory 308
or data storage 204), such that it is available for later commu-
nication by the interface 202.

Collector Operations

FIG. 15 illustrates a flowchart containing example opera-
tions for managing a monitoring job from the perspective of a
collector residing in a particular environment having one or
more resources. The operations illustrated in FIG. 15 may, for
example, be performed by, with the assistance of, and/or
under the control of one or more of a device, such as apparatus
300, and may use processor 304, memory 308, user interface
302, and communications interface 306. In operation 1502,
apparatus 300 includes means, such as communication inter-
face 306 or the like, for receiving a resource query from an
interface 202 via computer infrastructure. In this regard, the
resource query is created by a job instantiated using the inter-
face 202.

In operation 1504, the apparatus 300 may include means,
such as communications interface 306 or the like, for query-
ing resource identified in the resource query. Similarly, in
operation 1506, the apparatus 300 may include means, such
as communications interface 306 or the like, for receiving
result information from the resource.

Finally, in operation 1508, the apparatus 300 may include
means, such as communications interface 306 or the like, for
transmitting the result information to the computer infrastruc-
ture.

EXAMPLE
Database Service Availability Monitoring

Consider the example of a promotion and marketing ser-
vice that presents, via its website, promotions redeemable at
merchant establishments throughout the world. In this
example, the website of the promotion and marketing service
may, based on user traffic, access the promotion database
resources. However, because the promotion and marketing
service operates worldwide, there are promotion database
resources located in a variable of jurisdictions that scale on a
constant basis. Furthermore, loss of access to the database
would certainly cause economic harm due to the loss of
potential revenue from users visiting the company website.
Accordingly, the promotion and marketing service develops a
job to monitor the service availability of a database, and
intends to deploy it to monitor each of the promotion data-
bases it operates around the world.

As previously discussed, this process would historically
have required the individual development of a resource moni-
tor for each of the various promotion databases, which would
accordingly have to be tailored more specifically for each
specific deployment. However, using an embodiment of the
present invention, the promotion and marketing service cre-
ates ajob for monitoring a database, and creates environments
with environment variables specifying the specific network
address of each database to be monitored.

Accordingly, using interface 202, an operator (such as a
user or a local computing device) starts, using a job environ-
ment matrix of the interface 202, instances of the created job

10

20

25

35

40

45

55

16

to monitor all of the promotion databases globally. Starting
each job instance causes a communication to be transmitted,
via computer infrastructure 104, to a respective collector
within the corresponding environment. The collector queries
the promotion database in the environment for service status,
and transmits results of the query to the interface 202 via the
computer infrastructure 104. Based on a predefined execution
schedule, the job is able to periodically query the promotion
database and ensure its continued service availability, or alter-
natively quickly identify a problem. Accordingly, using an
embodiment of the present invention, the promotion and mar-
keting service is able to efficiently and eftectively monitor
promotion databases in a distributed network.

As described above, certain example embodiments of the
present invention may provide host-independent resource
monitoring for distributed networks. Using embodiments of
the present invention, resource monitors can be implemented
in a variety of computing environments by defining particular
environment variables using which the instantiate general-
ized monitoring jobs. Moreover, users can intuitively control
avariety of jobs in a variety of environments using an intuitive
graphical user interface, as described above. As a result,
resource monitors can be quickly and efficiently employed in
a variety of computer environments.

As will be appreciated, computer program code and/or
other instructions may be loaded onto a computer, processor
or other programmable apparatus’s circuitry to produce a
machine, such that execution of the code on the machine by
the computer, processor, or other circuitry creates the means
for implementing various functions, including those
described herein.

As described above and as will be appreciated based on this
disclosure, embodiments of the present invention may be
configured as methods, mobile devices, backend network
devices, and the like. Accordingly, embodiments may com-
prise various means including entirely of hardware or a com-
bination of software and hardware. Furthermore, embodi-
ments may take the form of a computer program producton at
least one computer-readable storage medium having com-
puter-readable program instructions (e.g., computer soft-
ware) embodied in the storage medium. Any suitable com-
puter-readable storage medium may be utilized, including
non-transitory hard disks, CD-ROMs, flash memory, optical
storage devices, magnetic storage devices, or the like.

Embodiments of the present invention have been described
above with reference to block diagrams and flowchart illus-
trations of methods, apparatuses, systems and computer pro-
gram products. It will be understood that each block of the
circuit diagrams and process flowcharts, and combinations of
blocks in the circuit diagrams and process flowcharts, respec-
tively, can be implemented by various means including com-
puter program instructions. These computer program instruc-
tions may be loaded onto a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the computer pro-
gram product includes the instructions which execute on the
computer or other programmable data processing apparatus
create a means for implementing the functions specified in the
flowchart block or blocks.

These computer program instructions may also be stored in
acomputer-readable storage device that can direct a computer
or other programmable data processing apparatus to function
in a particular manner, such that the instructions stored in the
computer-readable storage device produce an article of
manufacture including computer-readable instructions for
implementing the function discussed herein. The computer
program instructions may also be loaded onto a computer or

US 9,304,663 B1

17

other programmable data processing apparatus to cause a
series of operational steps to be performed on the computer or
other programmable apparatus, thereby producing a com-
puter-implemented process such that the instructions
executed on the computer or other programmable apparatus
cause performance of the steps and thereby implement the
functions discussed herein.

Accordingly, blocks of the block diagrams and flowchart
illustrations support combinations of means for performing
the specified functions, combinations of steps for performing
the specified functions and program instruction means for
performing the specified functions. It will also be understood
that each block of the circuit diagrams and process flow-
charts, and combinations of blocks in the circuit diagrams and
process tlowcharts, can be implemented by special purpose
hardware-based computer systems that perform the specified
functions or steps, or combinations of special purpose hard-
ware and computer instructions.

Many modifications and other embodiments of the inven-
tions set forth herein will come to mind to one skilled in the art
to which these embodiments of the invention pertain having
the benefit of the teachings presented in the foregoing
descriptions and the associated drawings. Therefore, it is to be
understood that the embodiments of the invention are not to
be limited to the specific embodiments disclosed and that
modifications and other embodiments are intended to be
included within the scope of the appended claims. Although
specific terms are employed herein, they are used in a generic
and descriptive sense only and not for purposes of limitation.

What is claimed is:

1. An apparatus comprising a processor and a memory, the
memory storing computer program code that, when executed
by the processor, causes the apparatus to:

determine, from a set of jobs, one or more resource moni-

toring jobs to execute, wherein the one or more resource
monitoring jobs are configured to monitor the status of
resources within a distributed network;

determine one or more environments in which to run the

one or more resource monitoring jobs, wherein the one
or more environments are defined using one or more
environment variables;
instantiate the one or more resource monitoring jobs with
the one or more environment variables for the deter-
mined one or more environments such that the one or
more resource monitoring jobs are configured for opera-
tion in the determined one or more environments; and

display, using a graphical user interface, a job environment
matrix including a list of the set of jobs in conjunction
with a running status of each job ofthe setof jobs in each
of one or more environments.

2. The apparatus of claim 1, wherein the computer program
code, when executed by the processor, further causes the
apparatus to:

receive, using the graphical user interface, instructions to

run, stop, suspend running of, or resume running an
instance of ajob displayed in the job environment matrix
in an environment displayed in the job environment
matrix; and

start, stop, suspend, or resume an instance of the job based

on the received instructions.

3. The apparatus of claim 1, wherein the computer program
code, when executed by the processor, further causes the
apparatus to:

display, using the graphical user interface, a job creation

interface;

receive, using the graphical user interface, abstract job

parameters;

5

25

40

45

50

55

60

65

18

create a new job based on the received abstract job param-

eters; and

store the new job in the memory.

4. The apparatus of claim 1, wherein the computer program
code, when executed by the processor, further causes the
apparatus to:

display, using the graphical user interface, a job editing

interface, wherein the job editing interface displays
abstract job parameters of a selected job;

receive, using the graphical user interface, instructions for

updating the abstract job parameters of the selected job;
update the selected job based on the received instructions;
and

store the updated job in the memory.

5. The apparatus of claim 1, wherein the computer program
code, when executed by the processor, further causes the
apparatus to:

display, using the graphical user interface, an environment

creation interface;

receive, using the graphical user interface, an environment

variable;

create a new environment based on the received environ-

ment variable; and

store the new environment in the memory.

6. The apparatus of claim 1, wherein the computer program
code, when executed by the processor, further causes the
apparatus to:

display, using the graphical user interface, an environment

editing interface, wherein the environment editing inter-
face displays parameters of a selected environment;
receive, using the graphical user interface, instructions for
updating the parameters of the selected environment;
update the selected environment based on the received
instructions; and
store the updated environment in the memory.
7. The apparatus of claim 1, wherein the memory stores a
domain having a list of jobs, a list of environments, and
permissions information, wherein the permissions informa-
tion indicates a list of users who may access the domain and
access levels of the list of users.
8. A method comprising:
determining, from a set of jobs, one or more resource
monitoring jobs to execute, wherein the one or more
resource monitoring jobs are configured to monitor the
status of resources within a distributed network;

determining one or more environments in which to run the
one or more resource monitoring jobs, wherein the one
or more environments are defined using one or more
environment variables;

instantiating, using a processor, the one or more resource

monitoring jobs with the one or more environment vari-
ables for the determined one or more environments such
that the one or more resource monitoring jobs are con-
figured for operation in the determined one or more
environments; and

displaying, using a graphical user interface, a job environ-

ment matrix including a list of the set of jobs in conjunc-
tion with a running status of each job of the set of jobs in
each of one or more environments.

9. The method of claim 8, further comprising:

receiving, using the graphical user interface, instructions to

run, stop, suspend running of, or resume running an
instance of a job displayed in the job environment matrix
in an environment displayed in the job environment
matrix; and

starting, stopping, suspending, or resuming an instance of

the job based on the received instructions.

US 9,304,663 B1

19

10. The method of claim 8, further comprising:

displaying, using the graphical user interface, a job cre-

ation interface;

receiving, using the graphical user interface, abstract job

parameters;

creating a new job based on the received abstract job

parameters; and

storing the new job in the memory.

11. The method of claim 8, further comprising:

displaying, using the graphical user interface, a job editing

interface, wherein the job editing interface displays
abstract job parameters of a selected job;

receiving, using the graphical user interface, instructions

for updating the abstract job parameters of the selected
job;

updating the selected job based on the received instruc-

tions; and

storing the updated job in a memory.

12. The method of claim 8, further comprising:

displaying, using the graphical user interface, an environ-

ment creation interface;

receiving, using the graphical user interface, an environ-

ment variable;

creating a new environment based on the received environ-

ment variable; and

storing the new environment in the memory.

13. The method of claim 8, further comprising:

displaying, using the graphical user interface, an environ-

ment editing interface, wherein the environment editing
interface displays parameters of a selected environment;
receiving, using the graphical user interface, instructions
for updating the parameters of the selected environment;
updating the selected environment based on the received
instructions; and

storing the updated environment in the memory.

14. The method of claim 8, further comprising storing, in a
memory, adomain having a list of jobs, a list of environments,
and permissions information, wherein the permissions infor-
mation indicates a list of users who may access the domain
and access levels of the list of users.

15. A computer program product comprising a non-transi-
tory computer-readable storage medium storing computer
program code that, when executed by an apparatus, causes the
apparatus to:

determine, from a set of jobs, one or more resource moni-

toring jobs to execute, wherein the one or more resource
monitoring jobs are configured to monitor the status of
resources within a distributed network;

determine one or more environments in which to run the

one or more resource monitoring jobs, wherein the one
or more environments are defined using one or more
environment variables;

instantiate the one or more resource monitoring jobs with

the one or more environment variables for the deter-
mined one or more environments such that the one or
more resource monitoring jobs are configured for opera-
tion in the determined one or more environments; and

5

10

25

30

35

40

45

50

20

display, using a graphical user interface, a job environment
matrix including a list of the set of jobs in conjunction
with a running status of each job of the set of jobs in each
of one or more environments.

16. The computer program product of claim 15, wherein
the computer program code, when executed by the apparatus,
further causes the apparatus to:

receive, using the graphical user interface, instructions to

run, stop, suspend running of, or resume running an
instance of a job displayed in the job environment matrix
in an environment displayed in the job environment
matrix; and

start, stop, suspend, or resume an instance of the job based

on the received instructions.

17. The computer program product of claim 15, wherein
the computer program code, when executed by the apparatus,
further causes the apparatus to:

display, using the graphical user interface, a job creation

interface;

receive, using the graphical user interface, abstract job

parameters;

create a new job based on the received abstract job param-

eters; and

store the new job in the memory.

18. The computer program product of claim 15, wherein
the computer program code, when executed by the apparatus,
further causes the apparatus to:

display, using the graphical user interface, a job editing

interface, wherein the job editing interface displays
abstract job parameters of a selected job;

receive, using the graphical user interface, instructions for

updating the abstract job parameters of the selected job;
update the selected job based on the received instructions;
and

store the updated job in the memory.

19. The computer program product of claim 15, wherein
the computer program code, when executed by the apparatus,
further causes the apparatus to:

display, using the graphical user interface, an environment

creation interface;

receive, using the graphical user interface, an environment

variable;

create a new environment based on the received environ-

ment variable; and

store the new environment in the memory.

20. The computer program product of claim 15, wherein
the computer program code, when executed by the apparatus,
further causes the apparatus to:

display, using the graphical user interface, an environment

editing interface, wherein the environment editing inter-
face displays parameters of a selected environment;
receive, using the graphical user interface, instructions for
updating the parameters of the selected environment;
update the selected environment based on the received
instructions; and
store the updated environment in the memory.

#* #* #* #* #*

